Abstract
We introduce a principle, Oz, for displaying color imagery: directly controlling the human eye’s photoreceptor activity via cell-by-cell light delivery. Theoretically, novel colors are possible through bypassing the constraints set by the cone spectral sensitivities and activating M cone cells exclusively. In practice, we confirm a partial expansion of colorspace toward that theoretical ideal. Attempting to activate M cones exclusively is shown to elicit a color beyond the natural human gamut, formally measured with color matching by human subjects. They describe the color as blue-green of unprecedented saturation. Further experiments show that subjects perceive Oz colors in image and video form. The prototype targets laser microdoses to thousands of spectrally classified cones under fixational eye motion. These results are proof-of-principle for programmable control over individual photoreceptors at population scale....We name this new color “olo,” with the ideal version of olo defined as pure M activation. Subjects report that olo in our prototype system appears blue-green of unprecedented saturation, when viewed relative to a neutral gray background. Subjects find that they must desaturate olo by adding white light before they can achieve a color match with the closest monochromatic light, which lies on the boundary of the gamut, unequivocal proof that olo lies beyond the gamut.
pull down to refresh
related posts