pull down to refresh
u = x^4
du = 4x^3 dx
\int_{0}^{1} \frac{4x^3 \left(1+x^{4(2006)}\right)}{(1+x^4)^{2008}} dx = \int_{0}^{1} \frac{1+u^{2006}}{(1+u)^{2008}} du
= \int_{0}^{1} \frac{1}{(1+u)^{2008}} du + \int_{0}^{1} \frac{u^{2006}}{(1+u)^{2008}} du
F(k) = \int_{0}^{1} \frac{u^{k}}{(1+u)^{k+2}} du
F(k) = \left. -\frac{u^{k}}{(k+1)(1+u)^{k+1}} \right|_{0}^{1} + \frac{k}{k+1} F(k-1)
F(0)
F(2006)
F(0)
which is easy to calculate, you can use the above algorithm to eventually calculateF(2006)
to find the answer.