Is this equality true? (Figure might not show well if using darkmode) Previous iteration: #704390 Guest iteration: #704571 (@cryotosensei)
(m+1)^3 + \sum{n=1}^m n^3 = \left( m+1+ \sum_{n=1}^{m} n \right)^2
(m+1)^3 + \sum{n=1}^m n^3 = (m+1)^2 + 2*(m+1)*\left(\sum_{n=1}^{m} n\right) + \left( \sum_{n=1}^{m} n \right)^2
1x+nx=(1+n)x: (m+1)^3 + \sum{n=1}^m n^3 = 1(m+1)^2 + m*(m+1)^2 + \left( \sum_{n=1}^{m} n \right)^2
(m+1)^3 + \sum{n=1}^m n^3 = (1+m)*(m+1)^2 + \left( \sum_{n=1}^{m} n \right)^2 (m+1)^3 + \sum{n=1}^m n^3 = (m+1)^3 + \left( \sum_{n=1}^{m} n \right)^2