“Physicists are much less concerned than mathematicians about rigorous proofs,” says Timothy Gowers, a mathematician at the Collège de France and a Fields Medal winner. Sometimes, he says, that “allows physicists to explore mathematical terrain more quickly than mathematicians.” If mathematicians tend to survey—in great depth—small parcels of this landscape, physicists are more likely to skim rapidly over vast tracts of this largely uncharted territory. With this perspective, physicists can happen across new, powerful mathematical concepts and associations, to which mathematicians can return, to try and justify (or disprove) them.
[...]
Initially hailed as a possible “theory of everything” that would unite quantum theory with Einstein’s theory of gravity, string theory has to date arguably had a bigger impact on some of the most abstract fields of mathematics, such as algebraic geometry and differential topology, than in physics. In these areas, Witten and other string theorists have been able to produce precise conjectures that mathematicians have later proved.
Lo and behold... String theory might have some use for the world after all ;)