141 sats \ 7 replies \ @k00b 13 Apr freebie \ on: New Material Could Drastically Increase the Efficiency of Solar Panels science
This is pretty awesome. I wonder what the theoretical threshold of photons to freed electrons is if 190% EQE produces 80% energy absorption. Like, how much energy does a photon carry and how much energy is required to free the most promiscuous electrons.
how much energy does a photon carry and how much energy is required to free the most promiscuous electrons.
That struck me as a fun question to ask ppq.ai. So I did. Here's what it says. It may be pure gobbledygook, of course, but the 25 sats spent on it may just provide a few clues to a proper answer:
The energy a photon carries is given by the equation:
[ E = h \nu ]
where:
- ( E ) is the energy of the photon
- ( h ) is Planck's constant ((6.626 \times 10^{-34}) Joule >seconds)
- ( \nu ) (nu) is the frequency of the photon
To determine how much energy is required to free the most readily liberated electron from an atom, we refer to the "work function" of the material. The work function is the minimum energy needed to remove an electron from the surface of a solid (typically a metal). This energy varies depending on the specific material.
For example, the work function for cesium, which has one of the lowest work functions of any metal, is about ( 2.14 ) electron volts (eV). Other materials can have higher work functions; for instance, platinum has a work function of approximately ( 5.65 ) eV.
To illustrate, if we're dealing with a photon intended to eject an electron from cesium, you would need a photon with an energy of at least ( 2.14 ) eV. The frequency (\nu) of the photon required could be calculated from the photon energy equation above, rearranging it:
[ \nu = \frac{E}{h} ]
Substituting the values:
[ \nu = \frac{2.14 , \text{eV}}{4.135 \times 10^{-15} , \text{eV} \cdot \text{s}} ]
[ \nu \approx 5.17 \times 10^{14} , \text{Hz} ]
This frequency corresponds to light in the visible spectrum, specifically near the violet end.
reply
reply
I've just zapped you
Thanks, but that should probably have gone to @k00b instead. He effectively crafted the ppq prompt. I would not have known to ask the question that way.
Just zapped you back for posting the article! As a solar panel user myself, these things interest me directly.