pull down to refresh
Spent the morning playing with cosine similarity searches over audio embedding: feed a track, get a list of similar samples. Currently running Drop The Hate against tidal-drum-machines (default for strudel)
tidal-drum-machines
% time python query_vibe.py fbs_drop_the_hate.wav --collection tidal-drum-machines --top-k 10 Loading CLAP model (laion/clap-htsat-unfused)... Loading weights: 100%|█| 447/447 [00:00<00:00, 10124.11it/s, Materializing param Loading fbs_drop_the_hate.wav... Duration: 330.4s Querying collection 'tidal-drum-machines' (2595 samples)... Top 10 matches for: fbs_drop_the_hate.wav Rank Similarity Sample ------------------------------------------------------------ 1 0.2778 machines/YamahaRM50/yamaharm50-lt/TOMS_103.wav 2 0.2772 machines/SoundmastersR88/soundmastersr88-oh/Open Hat.wav 3 0.2657 machines/YamahaTG33/yamahatg33-fx/SFX-01.wav 4 0.2633 machines/RolandMC202/rolandmc202-bd/Bassdrum-04.wav 5 0.2503 machines/RolandMC202/rolandmc202-bd/Bassdrum-01.wav 6 0.2486 machines/YamahaRM50/yamaharm50-lt/TOMS_104.wav 7 0.2448 machines/DoepferMS404/doepferms404-bd/Bassdrum Reverse.wav 8 0.2442 machines/RolandCompurhythm78/rolandcompurhythm78-misc/Quid-02.wav 9 0.2429 machines/RolandMC202/rolandmc202-bd/Bassdrum-05.wav 10 0.2428 machines/RhodesPolaris/rhodespolaris-bd/Bassdrum-01.wav 4.27s user 0.64s system 52% cpu 9.309 total
not really good yet, but it's amazing how amazingly vector databases amaze me 😂
Spent the morning playing with cosine similarity searches over audio embedding: feed a track, get a list of similar samples. Currently running Drop The Hate against
tidal-drum-machines(default for strudel)% time python query_vibe.py fbs_drop_the_hate.wav --collection tidal-drum-machines --top-k 10 Loading CLAP model (laion/clap-htsat-unfused)... Loading weights: 100%|█| 447/447 [00:00<00:00, 10124.11it/s, Materializing param Loading fbs_drop_the_hate.wav... Duration: 330.4s Querying collection 'tidal-drum-machines' (2595 samples)... Top 10 matches for: fbs_drop_the_hate.wav Rank Similarity Sample ------------------------------------------------------------ 1 0.2778 machines/YamahaRM50/yamaharm50-lt/TOMS_103.wav 2 0.2772 machines/SoundmastersR88/soundmastersr88-oh/Open Hat.wav 3 0.2657 machines/YamahaTG33/yamahatg33-fx/SFX-01.wav 4 0.2633 machines/RolandMC202/rolandmc202-bd/Bassdrum-04.wav 5 0.2503 machines/RolandMC202/rolandmc202-bd/Bassdrum-01.wav 6 0.2486 machines/YamahaRM50/yamaharm50-lt/TOMS_104.wav 7 0.2448 machines/DoepferMS404/doepferms404-bd/Bassdrum Reverse.wav 8 0.2442 machines/RolandCompurhythm78/rolandcompurhythm78-misc/Quid-02.wav 9 0.2429 machines/RolandMC202/rolandmc202-bd/Bassdrum-05.wav 10 0.2428 machines/RhodesPolaris/rhodespolaris-bd/Bassdrum-01.wav 4.27s user 0.64s system 52% cpu 9.309 totalnot really good yet, but it's amazing how amazingly vector databases amaze me 😂