pull down to refresh

The same pulling force that causes “tears” in a glass of wine also shapes embryos. It’s another example of how genes exploit mechanical forces for growth and development.
Sip a glass of wine, and you will notice liquid continuously weeping down the wetted side of the glass. In 1855, James Thomson, brother of Lord Kelvin, explained in the Philosophical Magazine that these wine “tears” or “legs” result from the difference in surface tension between alcohol and water. “This fact affords an explanation of several very curious motions,” Thomson wrote. Little did he realize that the same effect, later named the Marangoni effect, might also shape how embryos develop.
In March, a group of biophysicists in France reported that the Marangoni effect is responsible for the pivotal moment when a homogeneous blob of cells elongates and develops a head-and-tail axis — the first defining features of the organism it will become.
The finding is part of a trend that defies the norm in biology. Typically, biologists try to characterize growth, development and other biological processes as the result of chemical cues triggered by genetic instructions. But that picture has often seemed incomplete. Researchers now increasingly appreciate the role of mechanical forces in biology: forces that push and pull tissues in response to their material properties, steering growth and development in ways that genes cannot.
...
Lord kelvin? Who came up with the temperature scale?
reply
right
Absolute temperatures are stated in units of kelvin in Lord Kelvin's honour.
reply
Very nice used Kelvin scale when I took thermodynamics
reply

Marangoni-like tissue flows enhance symmetry breaking of embryonic organoids

Abstract

During the early development of multi-cellular animals, cells self-organize to set up the body axes such as the primary head-to-tail axis. Several signalling pathways are known to control body axis formation. Here we show that tissue mechanics also plays an important role. We focus on the emergence of a primary axis in initially spherical aggregates of mouse embryonic stem cells, which mirrors events in the development of the early mouse embryo. These aggregates break rotational symmetry by establishing domains of different expression profiles, for example, of the transcription factor T/Brachyury and the adhesion molecule E-cadherin. By combining quantitative microscopy and physical modelling, we identify large-scale tissue flows with a recirculating component that contribute substantially to the symmetry breaking. We show that the recirculating flows are—akin to Marangoni flows—driven by a difference in tissue surface tensions, whose existence we further confirm using aggregate fusion experiments. Our work highlights that body axis formation is not only driven by biochemical processes but can also be amplified by tissue flows. We expect that this type of amplification may operate in many other organoid and in vivo systems.
reply