pull down to refresh

Listen to this story As recently as 2022, just building a large language model (LLM) was a feat at the cutting edge of artificial-intelligence (AI) engineering. Three years on, experts are harder to impress. To really stand out in the crowded marketplace, an AI lab needs not just to build a high-quality model, but to build it cheaply. In December a Chinese firm, DeepSeek, earned itself headlines for cutting the dollar cost of training a frontier model down from $61.6m (the cost of Llama 3.1, an LLM produced by Meta, a technology company) to just $6m. In a preprint posted online in February, researchers at Stanford University and the University of Washington claim to have gone several orders of magnitude better, training their s1 LLM for just $6. Phrased another way, DeepSeek took 2.7m hours of computer time to train; s1 took just under seven hours.
The figures are eye-popping, but the comparison is not exactly like-for-like. Where DeepSeek’s v3 chatbot was trained from scratch—accusations of data theft from OpenAI, an American competitor, and peers notwithstanding—s1 is instead “fine-tuned” on the pre-existing Qwen2.5 LLM, produced by Alibaba, China’s other top-tier AI lab. Before s1’s training began, in other words, the model could already write, ask questions, and produce code. Piggybacking of this kind can lead to savings, but can’t cut costs down to single digits on its own. To do that, the American team had to break free of the dominant paradigm in AI research, wherein the amount of data and computing power available to train a language model is thought to improve its performance. They instead hypothesised that a smaller amount of data, of high enough quality, could do the job just as well. To test that proposition, they gathered a selection of 59,000 questions covering everything from standardised English tests to graduate-level problems in probability, with the intention of narrowing them down to the most effective training set possible.
Not sure exactly how to think about this. They did build on a previous LLM, which was trained on a staggering amount of data, so it is not truly a 6$ model. But maybe we got to the point now where we can consider existing LLMs part of the public good and reading in all the weights (or whatever other method they use to reverse engineer it if not public) is akin to reading one extremely dense volume of a single encyclopedia?